Home

Research on the Cognitive Neuroscience of Memory

  • How and where memory occurs in the brain, particularly memory acquired through practice
  • How experience shapes action, perception and thought through pervasive mechanisms of plasticity throughout the human brain
    • Implicit and explicit memory contributions to perceptual-motor skill learning
    • Implicit and explicit memory in visual category learning
  • How general cognitive ability can be improved through cognitive practice
    • Repetitive training of working memory span to improve cognition
    • For both younger adults and to remediate age-related cognitive decline

 

Current Projects

  • Perceptual-motor skill learning using the SISL task
  • Working memory training using the SeVi-WM task
  • Using computational modeling and functional neuroimaging to study interactions among the brain’s memory systems

Check the Presentations link on the right side bar to see the most recent ideas and reports as presented as posters and talks at recent conferences.

Interested in Participating in Research?

 

Contact Information
309 Cresap Laboratory
Department of Psychology
Northwestern University
Phone: (847) 467-5779
Mailing Address
Reber Laboratory
Northwestern University
2029 Sheridan Road
Evanston, IL 60201

Neuroscience Meets Cryptography

Our article on our “cortical cyptography” project is out in the Communications of the ACM:
http://cacm.acm.org/magazines/2014/5/174358-neuroscience-meets-cryptography/fulltext

The focus is on how implicit knowledge of a password provides resistance to coercion attacks were you might be asked/forced to give up your password. While true, we frequently see people raising concerns that our method is too slow/cumbersome in its current implementation for regular use — also true! Probably the useful practical application would be things like replacing the current system of personal questions secure websites ask you for when you need to reset your password. If we were really to build an app for that, I think we’d still need to improve the learning rate (shorten time) and the knowledge detection methods.

Fortunately, doing those things requires learning more about how the brain system that does this kind of learning works — which is what we do here every day.

We may have discovered a way to use this method to do secure transmission of arbitrary messages as well. However, to get a reasonably secure amount of entropy, it might be far too cumbersome for actual practical use. I like the idea conceptually, though, so maybe we’ll run a low-entropy proof of concept anyway just because I think it’s cool.

Post-doctoral position available

Enhancing Intuitive Decision Making through Implicit Learning

We are looking for a post-doctoral researcher to contribute to a new ONR funded project that will use computational modeling and fMRI to examine intuitive decision making.  Using our PINNACLE framework, we will build computational simulation models of cognitive processing that depends on interactions between implicit and explicit knowledge.  These will be used in conjunction with fMRI data collection to test and expand the cognitive models.  The overarching goal is to use the cognitive neuroscience of memory systems to identify conditions in which both types of memory can be optimally applied in support of decision processes.

Requirements: expertise in either cognitive modeling or fMRI design and analysis.  Experience in both a plus.

Funding is available through at least June 2017.

Posted March 17, 2014.  Applications will be reviewed until the position is filled.

Contact: preber@northwestern.edu

The Man Who Would Teach Machines to Think

Good article on Cognitive Science versus Artificial Intelligence in the Atlantic from a few weeks ago.

http://www.theatlantic.com/magazine/archive/2013/11/the-man-who-would-teach-machines-to-think/309529/

Douglas Hofstadter, the Pulitzer Prize–winning author of Gödel, Escher, Bach, thinks we’ve lost sight of what artificial intelligence really means. His stubborn quest to replicate the human mind.

This is the key point, in my opinion:

“I don’t want to be involved in passing off some fancy program’s behavior for intelligence when I know that it has nothing to do with intelligence. And I don’t know why more people aren’t that way.”

I’ve had the chance recently to tell the story of how I came to Cognitive Neuroscience from originally studying Computer Science and this captures the main idea quite well.

Especially the last part of the quote — I really don’t understand why more people don’t think this way.  I’ve thought that ever since Deep Blue beat the best chess players in the world, why isn’t anybody organizing competitions for actually smart chess playing programs that aren’t allowed to brute force search billions of positions?  I guess there just aren’t enough of us who think that is an interesting problem.  Or maybe among those of us who do, there aren’t any who have the time to work on that problem since there are so many other interesting problems in trying to study human intelligence.

Neuroscience and video game skill learning

I wrote a short piece for a gaming-oriented online magazine, GLHF (Good Luck, Have Fun!) talking about the neuroscience of skill learning and how it applies to getting better at even things like video games.  The magazine is generally focused on Starcraft2 and the professional e-sports scene around Starcraft (although I think they want to get into Dota2 as well).

I clipped images of the piece below, but you can access it directly either via the main magazine url: http://glhfmag.com/

Or you can go directly to the relevant issue via: http://issuu.com/glhfmag/docs/glhf_magazine_6_issuu_single_page?e=5965119/4641972

 

Reber_NeuroSkill_p1Reber_NeuroSkill_p3

Reber_NeuroSkill_p5

 

Brain training by Starcraft

Can’t believe I didn’t Randomness this one already…

Real-Time Strategy Game Training: Emergence of a Cognitive Flexibility Trait

  • Brian D. Glass, W. Todd Maddox, & Bradley C. Love

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0070350

The main finding: increased cognitive flexibility after 40 hours of playing Starcraft.  Of note, the assessment of cognitive flexibility was done by meta-analytic Bayes factor across a wide array of assessments.  That’s very creative and maybe the right way to be approaching measurement of subtle transfer effects.  If the transfer effect is in a process that is partly represented across a variety of measures, you’d need someway of combining the measures and also partially out the target process.  Also of note, the participants were all female because they wanted non-gamers (defined as <2 hours/week) and there weren’t any male non-gamers at UT Austin.

Neuroscience Meets Cryptography

Our article on our “cortical cyptography” project is out in the Communications of the ACM: http://cacm.acm.org/magazines/2014/5/174358-neuroscience-meets-cryptography/fulltext The focus is on how implicit knowledge of a password provides resistance to coercion attacks were you might be asked/forced to give up your password. While true, we frequently see people raising concerns that our method is too slow/cumbersome …

Read more

Post-doctoral position available

Enhancing Intuitive Decision Making through Implicit Learning We are looking for a post-doctoral researcher to contribute to a new ONR funded project that will use computational modeling and fMRI to examine intuitive decision making.  Using our PINNACLE framework, we will build computational simulation models of cognitive processing that depends on interactions between implicit and explicit …

Read more

Ego Depletion Slows Implicit Skill Learning

Thompson, K. R., Sanchez, D. J., Wesley, A. H., & Reber, P. J. (submitted). Ego depletion slows implicit skill learning. Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources during practice. Dual-task experiments …

Read more